Homogenization and non-homogenization of certain non-convex Hamilton–Jacobi equations
نویسندگان
چکیده
منابع مشابه
Non convex homogenization problems for singular structures
We prove a homogenization theorem for non-convex functionals depending on vector-valued functions, defined on Sobolev spaces with respect to oscillating measures. The proof combines the use of the localization methods of Γ-convergence with a ‘discretization’ argument, which allows to link the oscillating energies to functionals defined on a single Lebesgue space, and to state the hypothesis of ...
متن کاملOn non-periodic homogenization of time-dependent equations
The recently introduced needle problem approach for the homogenization of non-periodic problems was originally designed for the homogenization of elliptic problems. After a short review of the needle problem approach we demonstrate in this note how the stationary results can be transferred to time-dependent problems. The standard parabolic problem of the corresponding heat equation in a heterog...
متن کاملSome Homogenization Results for Non-Coercive Hamilton-Jacobi Equations
Recently, C. Imbert & R. Monneau study the homogenization of coercive HamiltonJacobi Equations with a u/ε-dependence : this unusual dependence leads to a non-standard cell problem and, in order to solve it, they introduce new ideas to obtain the estimates on the oscillations of the solutions. In this article, we use their ideas to provide new homogenization results for “standard” Hamilton-Jacob...
متن کاملcommuting and non -commuting graphs of finit groups
فرض کنیمg یک گروه غیر آبلی متناهی باشد . گراف جابجایی g که با نماد نمایش داده می شود ،گرافی است ساده با مجموعه رئوس که در آن دو راس با یک یال به هم وصل می شوند اگر و تنها اگر . مکمل گراف جابجایی g راگراف نا جابجایی g می نامیم.و با نماد نشان می دهیم. گرافهای جابجایی و ناجابجایی یک گروه متناهی ،اولین بار توسطاردوش1 مطرح گردید ،ولی در سالهای اخیر به طور مفصل در مورد بحث و بررسی قرار گرفتند . در ،م...
15 صفحه اولA non-periodic and two-dimensional example of elliptic homogenization
Background. When studying the microscale behavior (beyond the reach of numerical solution methods) of physical systems, one is naturally lead to the concept of homogenization, i.e., the theory of the convergence of sequences of partial differential equations. The homogenization of periodic structures using the two-scale convergence technique is well-established due to the pioneering work by Gab...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal de Mathématiques Pures et Appliquées
سال: 2017
ISSN: 0021-7824
DOI: 10.1016/j.matpur.2017.05.016